趋势洞察 7小时前 196 阅读 0 评论

无需外部数据!AI自问自答实现推理能力进化

作者头像
量子位

AI技术专栏作家 | 发布了 246 篇文章

时令 发自 凹非寺

量子位 | 公众号 QbitAI

AI通过自问自答就能提升推理能力?!

这正是卡内基梅隆大学团队提出的新框架SQLM——一种无需外部数据的自我提问模型。

该框架包含提问者(proposer)和解答者(solver)两个角色,提问者生成与给定主题相关的问题,解答者旨在解决问题。

网友们神评,“简直是带有RL的GAN”。

值得一提的是,此团队中又双叒叕现华人身影~

通过强化学习最大化期望奖励

当前大语言模型的训练很大程度上仍依赖人工整理数据集,堪称费时费力。

为了减轻这一负担,研究人员开发了用于强化学习的无监督奖励函数。然而,这些函数仍然依赖于预先提供的高质量输入提示。

因此,问题的难点从“生成答案”转移到了“生成高质量问题”。

这凸显出当前方法的一个关键不足:

缺乏一种可扩展且自我维持的流程,能够在无人干预的情况下自动生成有意义的问题和答案。

为此,研究者提出了SQLM框架

,一种非对称的自我博弈框架,其中提问者

,解答者

回答该问题,两者均通过强化学习进行训练,以最大化期望奖励。

其中,提问者生成问题会对解答者形成条件影响,而解答者的表现又反过来为提问者提供奖励,从而不断优化提问者。

由于缺乏真实答案,研究者设计了基于“生成者–验证者差距”的自监督奖励函数。

若生成器-验证器差距小(例如算数问题),则采用多数投票作为代理奖励。

若生成器-验证器差距大(例如编程问题),先由提问者生成测试用例,奖励则基于通过测试的比例。

这种极小极大式的训练框架通过自博弈实现了稳定训练,并使奖励机制能够针对具体问题进行自适应调整。

为了评估模型的不同能力,研究者进行了三部分任务,并使用Qwen2.5-3B-Instruct运行实验。

算术任务

研究人员让提问者生成一个三位数的算数问题,并将其作为解答器的输入。他们按照TinyZero的设置,构建了一组包含4096个三位数乘法问题的测试集。

代数任务

研究者让模型生成最多包含两个变量的线性方程,并在OMEGA基准中的100道线性方程测试题上进行评估。

编程问题

他们让模型生成类似LeetCode中简单题的问题,输入为整数列表,输出为单个整数或另一个列表,并在Codeforces测试集的一个子集上进行评估。

实验结果显示,SQLM将Qwen2.5-3B-Instruct在算术任务上的准确率提高了14%,在代数任务上提高了16%;在编程任务上的准确率提高了7%。

此外,上表还显示出SQLM显著优于格式奖励基线(用于稳定训练和规范输出格式的参考值),表明推理能力的真正提升。

团队介绍

Lili Chen,本科毕业于加州大学伯克利分校,现博士就读于卡内基梅隆大学。

Katerina Fragkiadaki,卡内基梅隆大学机器学习系计算机科学副教授,博士毕业于宾夕法尼亚大,曾在加州大学伯克利分校担任博士后研究员,并于谷歌研究院工作。

Hao Liu,博士毕业于加州大学伯克利分校,曾任谷歌DeepMind研究员,即将出任卡内基梅隆大学机器学习系的助理教授。

Deepak Pathak,Skild AI创始人,本科就读于印度理工学院坎普尔分校,博士毕业于加州大学伯克利分校,曾在Meta担任了一年的研究员,现任卡内基梅隆大学计算机科学学院的助理教授。

参考链接:
[1]https://x.com/iScienceLuvr/status/1953052817012474353
[2]https://arxiv.org/abs/2508.03682

— 完 —

量子位 QbitAI · 头条号签约

关注我们,第一时间获知前沿科技动态

作者头像

AI前线

专注人工智能前沿技术报道,深入解析AI发展趋势与应用场景

246篇文章 1.2M阅读 56.3k粉丝

评论 (128)

用户头像

AI爱好者

2小时前

这个更新太令人期待了!视频分析功能将极大扩展AI的应用场景,特别是在教育和内容创作领域。

用户头像

开发者小明

昨天

有没有人测试过新的API响应速度?我们正在开发一个实时视频分析应用,非常关注性能表现。

作者头像

AI前线 作者

12小时前

我们测试的平均响应时间在300ms左右,比上一代快了很多,适合实时应用场景。

用户头像

科技观察家

3天前

GPT-4的视频处理能力已经接近专业级水平,这可能会对内容审核、视频编辑等行业产生颠覆性影响。期待看到更多创新应用!