AI热点 5小时前 61 阅读 0 评论

击败Meta登榜首:推理增强的文档排序模型ReasonRank来了

作者头像
AI中国

AI技术专栏作家 | 发布了 246 篇文章


本文的第一作者是刘文涵,就读于中国人民大学高瓴人工智能学院,博士三年级,导师为窦志成教授,目前在百度大搜部门进行实习。他的研究方向聚焦于 AI 搜索,在顶级国际会议如 ACL、WWW 等发表了多篇论文。


推理大模型(Large Reasoning Model)极大的促进了自然语言处理领域的发展,而信息检索领域的核心问题之一是文档排序,如何利用强大的推理大模型通过主动推理来判断文档的相关性,进而再对文档进行排序是一个值得探索的方向。


在本次工作中,我们提出了 ReasonRank,ReasonRank 在包括 BRIGHT、R2MED 在内的多个榜单,击败了 UMASS 大学,Waterloo 大学,Meta 在内的多个大学和机构,于 2025 年 8 月 9 日荣登榜单第一名。我们更小尺寸的 ReasonRank-7B 也远远超越了其他 32B 大小的推理型排序大模型,同时相比 pointwise 排序器具备明显的效率优势。此外,我们的论文还获得了 Huggingface paper 日榜第一名。


图 1:8 月 9 日,ReasonRank 在 BRIGHT benchmark 上荣登榜单第一名




  • 论文标题:ReasonRank: Empowering Passage Ranking with Strong Reasoning Ability
  • 论文链接:https://arxiv.org/pdf/2508.07050
  • 代码仓库:https://github.com/8421BCD/ReasonRank/
  • 开源数据 & 模型:https://huggingface.co/collections/liuwenhan/reasonrank-68941e9e6af7edd3714ee6e2


研究动机:复杂推理型训练数据的缺乏


近来,test-time reasoning 已经被证明能够提升文档排序器的排序效果。其通过在给出最终排序结果前,先显式进行一系列推理过程(查询理解,文档比较等等)。然而,由于推理密集型(reasoning-intensive)排序训练数据的稀缺,现有推理型排序器均依赖 MSMARCO 这种传统 web 搜索数据进行训练。


这些数据主要侧重简单的语义或词匹配,导致模型在面临复杂搜索场景(如 StackExchange 复杂查询、代码类查询、数学类查询等)时泛化能力受限。而使用人工标注构造推理密集型排序训练数据代价又是非常高的。


方法设计:数据合成 + 两阶段训练


为破解推理密集型排序训练数据稀缺的问题,我们提出了基于 DeepSeek-R1 的自动化数据合成框架,生成了 13K 高质量的推理密集型 listwise 排序训练数据。基于合成的训练数据,我们进一步设计了一个两阶段的训练框架包括 Supervised Fine-Tuning (SFT) 和 Reinforcement Learning (RL)。在 RL 阶段,不同于以往仅使用排序指标作为奖励(reward),我们基于 listwise 排序中滑动窗口策略的特性设计了 multi-view ranking reward,其更适合 listwise 排序。


1. 数据合成


传统模型在复杂排序任务上表现差,主要是由于缺少面向复杂推理搜索场景的训练数据的缺失。根据已有的 IR benchmarks,我们将复杂搜索查询分为四大类并收集了对应领域的用户查询:


  • 复杂问答型查询
  • 代码类查询
  • 数学类查询
  • 网页搜索类查询



有了查询,如何挖掘高质量的候选文档列表以及构造训练 label 是一个关键问题,其直接影响模型训练的效果。


在本文,我们提出利用强大的 DeepSeek-R1 从海量的 web 页面和已有的文档 corpus 挖掘其相关文档以及不相关文档(包含难负例)。在这个过程,我们还给 R1 提供了 query 的人工标注的正确答案来提高挖掘的准确性,相比传统蒸馏,这样能够进一步提升 R1 相关性判断的准确性。


这样我们便得到了文档的 pointwise 训练标签(相关 / 不相关)。为了训练最终的 listwise 排序器,我们继续利用 DeepSeek-R1 对候选文档进行 listwise 排序,得到 listwise 训练标签(包含推理链以及最终的 gold ranking list)。


为了提升训练数据的质量,我们进一步设计了一个自一致性(self-consistency)数据过滤机制。


我们利用得到的 pointwise 标签对 listwise 标签中的 gold ranking list 计算排序指标 NDCG@10,小于阈值 α 的数据将被过滤掉(表明教师模型 R1 判断不一致,相应数据样本被丢弃),最终我们得到 13K 高质量的多领域训练数据集。


2. 两阶段训练



阶段一:冷启动 SFT


在获得高质量的推理密集型训练数据后,我们首先采用监督微调对大模型进行 “冷启动” 训练,通过 R1 的推理链显式引导模型学习如何对一组文档进行对比、推理和排序。具体而言,输入由用户查询和对应的候选文档列表组成,输出为 listwise label(也即 R1 生成的推理链和 gold ranking list)。


阶段二:多视角排序 reward 的强化学习


多视角排序 reward


1) 召回视角(Recall@10):


现有方法在强化学习训练排序任务中,通常只采用单轮的 NDCG@10 作为奖励信号。然而,我们认为这种单轮奖励对于多轮滑动窗口的 listwise 排序任务而言是次优的。这是因为滑动窗口策略要求模型在排序时进行多轮、序列化的局部决策:每一步窗口内的前 10 个文档才会被传递给下一个排序窗口,并通过滑动窗口不断迭代,实现整体排序。此时,单独优化每一窗口的 NDCG 指标,并不一定能够带来全局最优的排序效果。基于上述观察,我们在强化学习奖励设计中,额外引入了 Recall@10 指标来确保重要文档不会在滑动过程中被遗漏,有助于后续窗口获得更优的排序基础。


2) 排序相似度视角(RBO):


此外,相较于基于 pointwise 标签计算 NDCG@10,我们认为 listwise 训练标签的 gold ranking list 能够提供更细粒度的排序信号。因此,我们引入 RBO(Rank-biased Overlap)指标,作为补充排序奖励,用于衡量当前排序结果与金标准排序的相似性。


我们将 NDCG@10、Recall@10 和 RBO 结合,构建了多视角排序奖励:



格式 reward


为了保证正确的输出格式,我们考虑了两种格式:


(1)输出格式:保证输出内容嵌套在 和 < answer> 标签中;

(2)答案格式: 标签内的排序列表要满足特定的输出格式(例如:[4] > [2] > …)。


最终,我们的强化学习 reward 计算如下,我们使用 GRPO 算法进行 RL 优化。



核心实验 1:多个 benchmarks 上效果实现 SOTA


为充分评估 ReasonRank 在不同推理型搜索任务上的效果,我们选取了两个推理型 IR benchmark:


  • BRIGHT:包含 12 个推理密集型搜索任务,涉及复杂问答型检索,代码类检索,定理类检索等等
  • R2MED:包含 8 个面向医疗类的复杂查询检索数据集,覆盖问答参考文献检索、临床证据检索和临床病例检索




从实验结果可以发现:ReasonRank 显著优于已有的排序器。ReasonRank(32B)在 BRIGHT 和 R2MED 上分别超越最好的 baselines 4-5 个点;且 ReasonRank(7B)甚至优于所有的 32B 的 baselines。



此外,我们还在传统 IR benchmark BEIR 上开展了实验,结果证明了其良好的泛化性


核心实验 2:效率优势



我们还在 BRIGHT 上测试了 ReasonRank 的排序效率,并与推理型 pointwise 排序器 Rank1 比较。在以往,pointwise 排序器被认为是最高效的。然而,推理场景下,我们发现我们的 listwise 排序器 ReasonRank 效率显著高于 pointwise 排序器 Rank1。这种高效性来自于 Rank1 需要为每个段落生成推理链,而 ReasonRank 一次处理 20 个段落,只生成一条推理链,大大减少了输出的 token 数量。


核心实验 3:消融实验



我们还开展了详尽的消融实验,结果证明了我们构造的多领域数据集相比于单领域(MSMARCO)的效果优势以及我们两阶段训练框架和 multi-view ranking reward 设计的合理性。


总结与未来展望


我们在本文提出了多领域面向推理型排序的训练数据,解决了训练数据上的难题。并设计了合理的 SFT 和 RL 训练方法,充分激发了推理型排序器的效果。未来,如何基于大模型的推理能力继续提升搜索排序器的效果,我们认为仍有多个方向值得探索:


  • 引入非推理型数据:未来可以在训练过程中融合非推理型数据,使模型能够灵活适应不同难度的搜索场景,在推理与非推理模式间自如切换,提升排序器的通用性和实用性。

  • 探索基于全排序(full ranking)的推理型重排序方法:已有的工作已经证明 LLM 一次排序全部候选文档的能力。未来可以结合 LLM 强大的全排序能力,研究基于推理的全局排序方法,替代当前的滑动窗口策略,以提升模型在大规模文档排序任务中的效率和表现。

  • 尝试多样化模型骨干:后续可尝试以 Llama 3.1、以及推理型 LRM(例如 Qwen3)等更多不同类型的大语言模型作为 ReasonRank 的基础,进一步验证方法的通用性和有效性。
作者头像

AI前线

专注人工智能前沿技术报道,深入解析AI发展趋势与应用场景

246篇文章 1.2M阅读 56.3k粉丝

评论 (128)

用户头像

AI爱好者

2小时前

这个更新太令人期待了!视频分析功能将极大扩展AI的应用场景,特别是在教育和内容创作领域。

用户头像

开发者小明

昨天

有没有人测试过新的API响应速度?我们正在开发一个实时视频分析应用,非常关注性能表现。

作者头像

AI前线 作者

12小时前

我们测试的平均响应时间在300ms左右,比上一代快了很多,适合实时应用场景。

用户头像

科技观察家

3天前

GPT-4的视频处理能力已经接近专业级水平,这可能会对内容审核、视频编辑等行业产生颠覆性影响。期待看到更多创新应用!